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The Exponential Distribution in Small Angle 
X-Ray Scattering. Theory and Practice* 

A. J~inosi 

Institute of Physical Chemistry, University of Graz, A-8010 Graz, Austria 

Summary. From all the theoretical small-angle X-ray scattering (SAXS) curves of compact (non- 
particulate) systems elaborated systematically by Porod [2], we give a theoretical analysis of only one 
scattering curve, the corresponding correlation function of which is an exponential distribution. To 
obtain a correct as well as an easier determination of the zero-intensity I 0 and the correlation length 
l c than with the procedure usual up to now (analysis of the plot I(s)- 1/, v s .  s 2 with n = 2 or 3/2) the 
classical SAXS-parameters of particle scattering will be involved in the evaluation. In this way the 
results get also a more useful conception for a practical application. 
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Die exponentielle Verteilung in der Riintgenkleinwinkelstreuung. Theorie und Praxis 

Von den systematisch besprochenen R6ntgenkleinwinkelstreukurven der dichtgepackten Systeme von 
Porod [2] wird nur eine Streukurve, deren Korrelationsfunktion eine exponentielle Verteilung 
aufweist, theoretisch analysiert und mit den klassischen Auswertungsmethoden der Partikelstreuung 
in Verbindung gesetzt. Dadurch werden die die Streukurve bestimmenden Parameter I c (Koh~irenzl~inge) 
und die Nullintensit~it I o besser erfaBt als mit der in der Literatur bisher ver6ffentlichten Methode 
(Auftragung I(s)- 1/, gegen s 2, mit n = 2 oder 3/2). Damit erhalten augerdem die MeBergebnisse eine 
anschaulichere Auslegung. 

Introduction 

Description of  the Exponential Distribution 

I n  the  z e r o - o r d e r  P o i s s o n  d i s t r i b u t i o n  the  r a n d o m  va r i ab l e  r is sa id  t o  h a v e  the  

s t a n d a r d  e x p o n e n t i a l  d i s t r i b u t i o n  if its p r o b a b i l i t y  dens i ty  f u n c t i o n  at  r, in c o n -  

v e n t i o n a l l y  a b b r e v i a t e d  fo rm,  is 

0 f o r r < O  

7 ( r ) =  a e x p ( - a r )  f o r r ~ > O  

in w h i c h  a is an  ad jus t ab le ,  pos i t i ve  a n d  real  n u m b e r ,  ca l led  the  parameter of  the 
distribution. This  d i s t r i b u t i o n  is re fe r red  to  e i the r  as  the  nega t ive  e x p o n e n t i a l  o r  

* Dedicated to Prof. Dr. Dr. h.c. mult. Otto Kratky on the occasion of his 90th birthday 
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simply as the exponential. In the following we use the second version. The 
expectation value of the distribution is E(r)  = 1/a and the variance V(r)  = 1/a 2. 

The exponential distribution is generally well-known to describe the radio-active 
disintegration or among others the appearing of defects in matter. In his theoretical 
publication [2] Porod systematically studies the small-angle X-ray scattering 
(SAXS) curves of various compact (or non-particulate) systems, and shows that in 
some cases the self-convolution of the electron density distribution in the system, 
the so-called characteristic function or correlation function corresponds to an 
exponential distribution as well, e.g. gel-structure with increasing concentration. 
Earlier Debye and Bueche found the same by the light scattering study of Lucite 
and two glass samples [-1]. Utilizing the exponential distribution as a correlation 
function in SAXS (or in small-angle scattering in general), the random variable r 
signifies the distance, measured from an arbitrary point in the matter. The 
parameter of the distribution, a, is now the reciprocal value of a mean distance. This 
distance is defined [3] as the half of the integral breadth lc of the correlation 
function (1~/2 =- 1/a). l~ is the so-called coherence- or correlation length defined by 
Porod [4]. It is known that the r educed*  chord length or intersection length It, 
defined also by Porod [51 can be obtained by differentiating the correlation function 
at r--* 0. In our case (normalized exponential function) the differentiation always 
gives [3] 

(7(r)/~(0))' = (?0(r))' = - a =- - 1/1~. 

Therefore, we obtain for the exponential distribution and on l y  f o r  this  d i s t r ibu t ion ,  
an important relation between its correlation length l~ and its reduced chord length 

21, = I c 

0"05 
0 I0 r [ nm ] 20 

Fig. 1. 1 the correlation function with 

exponent ia l  d is t r ibut ion ~0(r) = 

exp(2r/Ic), Ic = 10 nm; 2 the correlation 

function of a sphere, ?o(r) = 1 - 3x/2 + 
x3/2, x = r/D, with the diameter D = 

13.3 nm, corresponding to lc = 10 nm, 

and 3 Gaussian function with 2a = 

l c = 10nm 

* The reduced chord length lr is closely related to the (average) lengths ll and 12 of the chords crossing 

phase 1 and phase 2, respectively in the arbitrarily chosen direction (l 71 _- I~- 1 + l~ 1) [5] 
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Fig. 2. The distance distribution functions 
(p(r )  = rZTo(r))  of the curves of Fig. 1. 
1 exponential function, 2 sphere, and 
3 Gaussian function 

and the distr ibution takes the simple form 

7o(r) = e x p ( -  r/l,) = e x p ( -  2r/l~). (1) 

Figure 1 visualizes the exponential  distribution, Eq. (1), with I c = 10 nm (a = 1/l~ = 
2 / l ~ = 0 . 2 n m  -~) and compares  it with the correlation function of a sphere 
(7o(r) = 1-3x/2 + X3/2, X = r /D)  with the diameter  D = 13.3 nm (corresponding to 
Ic = 10nm; D = (4/3)l~) and with a normalized Gaussian probabili ty distr ibution 
having the same variance ( 7 o ( r ) = e x p ( - a 2 r 2 / 2 ) ) .  Figure 2 shows the distance 
distr ibution functions (p ( r )=  r2-7o(r)) of the same models (distance distribution 
functions are frequently utilized in the SAXS analysis). 

For  practical reasons we note here the moments  (the n th m o m e n t  of the 
distr ibution f ( x )  is M,  = ~ x " f ( x ) d x )  and some other useful statements of this 
distr ibution (Table 1). 

The  Fourier  Trans format ion  o f  the Exponent ia l  Distribution 

The spherically symmetric  Fourier  t ransformat ion of the exponential  distr ibution 
70(r) gives the distribution of scattered intensity (scattering curve) of the studied 

Table 1. The moments and other parameters of the exponential function 

Eq. (1) 

Moments  
M ,  o = lc/2 = 1,, M e ,  = 12/4 = 12 

M~2 = 13/4 = 213, M~3 = 314/8 = 6 ¢  

M ~ ,  = 31ff/4 = 241,5, Mr, = Sr" e x p ( -  2 r i l e ) d r  = n!(Ic /2)  "+1 

Deduced values 
Center of gravity = lc /2  = l,, integral width = lc /2 = l,, 

breadth at half maximum = In 2 l f f2  = 0.3466/~ = 0.6931l,, 
a = Ic/2 = l,, variance = 1~/4 - 12 

M~2/M~o = 1~/2 = 2t~, AC~2/M~, = 1~ = 21, 
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system. Using the coordinate x = s for the scattering curve, we have 

I(s) = 2s- 1 S r'7o (r) sin 2rcrs dr 
= 2s - 1 ~ r exp ( - 2r/lc) sin 2rcrs dr = I o/(1 + (rcs/c)2) 2, (2) 

s = 2 sin 0/)., ). = wave length of the monochromat ic  X-ray. l(s) is the scattered 
intensity at the coordinate s, without the influence of the collimating slit system 
(pin-hole collimation or desmeared scattering curve), and the value of I(s) at s = 0, 
I o, is the so-called zero angle intensity. The Hankel transformation (of zero order) 
of the exponential distribution delivers the scattered intensity I'(s), which we obtain 
with a slit system whose slit length is very large compared to the slit width 
perpendicular to the slit length (]'(s) is the s.c. "smeared" scattering curve of I(s)): 

I'(s) = 2re ~ r exp( -- 2r/lc)'Jo (2rcrs) dr = I'o/(1 + (rcsl~)2) 3/2, (3) 

Jo is the Bessel function of zero order, ]'0 the intensity at zero angle of the smeared 
curve. 

Tables 2 and 3 present the necessary parameters for the characterization of the 
scattering curves (2) and (3). 

The well known [6] general mathematical  relations between the moments  M,  
and M,  of the scattered and smeared intensities (I(s) and I'(s)) and between those 
and the correlation function 7o(r) can be confirmed in the case of the exponential 
function also. Three important  relations for the following practical considerations 
should be kept in mind: 

(a) I'0 = 2M0 therefore "[o/Io = rc/2b, (b) I o = 2M2M~2/Tz, (c) MI  = 2M2, (4) 

where b is defined in the note to Tables 2 and 3. 

Table  2. P a r a m e t e r s  of  the  sca t t e red  in tens i ty  curve  I(s) c o r r e s p o n d i n g  to the  

e x p o n e n t i a l  co r r e l a t i on  func t i on  

M o m e n t s  

M o -= Io7~/4b , M 1  = I o / 2 b  2, M 2  = l o l t / 4 b  3 

D e d u c e d  values  

C e n t e r  of  g rav i ty  = 2 /~b ,  in tegra l  w id th  = 7~/4b, 

b r e a d t h  at  ha l f  m a x i m u m  = ( , , / 2  - 1)l/2/b,  ~r = x / 1  - 4 / ~ 2 / b  = 0.7712/b,  

va r i ance  = b -2 (1  - 4/~z 2) = 0.5947/b 2, M 2 / M  o = 1/b 2, M 1 / M  2 = 2 b / ~  

Table  3. P a r a m e t e r s  of  the  sm ea r ed  in tens i ty  curve  ]'(a) 

~/IO = "[0/b, ~/11 = I o / b 2 ,  integral width = 1/b 
Breadth at half maximum = 2 , ~  - 1/b = 0.7664/b 

N o t e  to T a b l e s  2 and  3: b = n lc /2a ,  or  = nlc, or  lc/2 w h e n  the  c o o r d i n a t e  x is g iven  

in m ( = 2aO), or  in  s ( = 2 sin 0/2), or  in h ( = 4n  sin 0/2), respectively.  0 = Bragg  angle,  

a = d i s t ance  f rom the  sample  to the  p l ane  of reg is t ra t ion ,  2 = wave  length.  I 0 is the  

sca t t e red  in tens i ty  a t  the  angle  0 = 0, a n d  I'o l ikewise t h a t  of  the  s m e a r e d  one  

(so-cal led zero  ang le  intensi t ies)  
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The Relation Between I(x) and "[(x) 

In the case of the exponential distribution of the correlation function, the pure 
(not smeared) scattering curve with the coordinate x, l(x)  and its smeared one, I'(x) 
(Fig. 3) are related in a simple way. We put Eq. (3) in Eq. (2) (using the general case 
s = x) and we have the desmeared curve I(x) from the smeared one 

I(x) = (Io/'[~/3)"[(x) 4/3, 

and with (4a) and Mo from Table 2 

I(x) = (2b/=)'[ o 1/3.~(X)4/3. 

Or, in the same manner,  we can obtain from the pure theoretical distribution the 
smeared one: 

"[(x) = ('[o/I3/4).I(x) 3/4 and I'(x) = (=/2b)I~/4"I(x) 3/4. 

As before (see note to Tables 2 and 3) b = =lc/2,, or rclc, or lc/2 when the variable x 
is given in m or in s or in h. 

The Classical Evaluation of  I(O), "[(0) and I c 

The classical evaluation of the scattering curve I(x) (or I'(x), Eqs. (2) or (3)) is the 
plot I(x)-1/2 vs. x 2 (or I(x)-2/3 vs. x2). The straight line with the slope t serves as 
an extrapolating function to obtain the zero intensity I 0 (or 7o) at the angle zero. 
F rom this zero intensity and from the slope the parameter  ~ can be calculated. We 
have from (2) (or (3)) with n = 2 (for I(s)) or n = 3/2 or (for I(s)) 

I (x ) -  1/, = io  1/, + io  1/nb2x2 (5) 
which gives 

io- 1/, at x = 0, 

0.0 

-2 .0  

-4.0-  

-6.0 

to 

H 

o 

1 2 

- 0 - 1 ' . o  

Fig. 3. The scattering curve of a sample with an exponential distribution of its correlation function in 
the plot log(I(s)) vs. log(s) obtained 1 with a pin-hole collimation system (unsmeared curve), 2 with a 
Kratky-camera (smeared intensity curve) 
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and with the slope 

we obtain 

t = I o 1/"bZ (5a) 

b =  I~/2nx/~t. 

But this extrapolation to the zero angle intensity is sometimes a delicate problem. 
We will discuss it in more detail at the end of this article. 

Practical Evaluation of  the Scattering Curve in the Case of  the Exponential 
Distribution of  l ts  Correlation Function 

The Guinier plots and the Guinier domains; the relation between the radius o f  gyration 
R x and the length of  coherence lc. 

The approximation of the innermost part  of any SAXS curve I(s) with a Gaussian 
distribution IGx(s ) was introduced by Guinier [7] originally for identical particles 
for which all orientations are equally probable. The Gaussian approximation of 
certain sections of any scattering curve in a modified form (Iq(s)= sl(s) or 
In (s  ) = S2I(s)) was elaborated by Porod [8]. In all three cases of the approximation 
the parameter  of the Gaussian functions is Rx. These are the radius of the gyration 
of the whole phase (Rv), or of its cross section (Rq), or of its thickness (Rd), 
respectively. The normalization factors Iox are the intensity of the Gaussian curves 
at s = 0 angle. They are proportional to the volume of the phase, in the case of Iov, 
or to the cross section surface F, in the case of Ioq, finally to the thickness D of the 
phase in the case of I0d, therefore, the general approximating function is: 

IG~(s ) = lox exp (( - 2~s)2"R 2) (6) 

with R 2 R2/3 for x = v and R 2 = R2/2 or R 2 2 = x x = Rd for x = q or d, respectively. R~ 
and Io~ are always to be determined from the corresponding intensity curve Ix(s) in 
the plot In(Ix(s)) vs. s 2 (Guinier plot). The straight line in these plots designs the 
domain of the validity of the Gaussian approximation ("Guinier domain") in which 
Ix(s)=IG~(s). To visualize this region, it is also instructive to draw a plot 
M(s) = IG~(s ) - Ix(s ) vs. s (cf. Fig. 4). 

The scattering curve corresponding to the exponential correlation function, Eq. 
(2), possesses also well defined Guinier regions (Fig. 4). The coordinates of the 
Guinier points depend on the value of l c (Table 4). By equality of the relations (2) 
and (6), at the coordinate of the "Guinier point" sG~, we find that soq = 1/r~lc and 
sod = 5/ercl~, e = 2.718 . . . .  Table 4 gives also the practical limits of the Guinier 
domains in s (nm-  1) and in m (cm). 

Table 4 and Fig. 4a  show that (except in extreme cases such as very small 
correlation length or very small entrance slit) the Guinier approximation can 
practically never be applied on the simple intensity curve I(s). The Guinier region 
for the evaluation of Rv lies in the innermost part  of the curve I(s) which is generally 
not accessible for the measurement  (e.g. for an entrance slit 60 m# and lc ~ 10 nm, 
the first measured point on the curve is nearly the last one of the Guinier region 
(Fig. 4 a)). On the other hand, we find in Table 4 and Fig. 4 c that the intensity 
curve of the thickness In(s ) = s2I(s) possesses a wide Guinier region around the 



Small Angle X-Ray Scattering 821 

_ 

0 
X -  

o 

H 

O_ 

0.0 '5 O. 

s [nm-U 

x 10 

_ 

! 

o 
X 

O, 

- 6  
2 

o 

I--I 

~ r  

I-4 

s [ n m  -I ]  

x ' IO -2 g 

. 

(,4 

b ,m-- 

X 

0 

-3  

,q 

s [nm -I] 

"7 X 10 -2 

Fig. 4. The three Guinier  do- 
mains of the scattering curve 
with an exponential distribution 
of its correlation function pre- 
sented as the difference 6Ix(s ) 
between the scattering curve 
Ix(s ) and the approximating 
Gaussiancurve Iox(s ). lc = 10 nm. 
a 6I(s)= l ( s ) -  IG(s); b 6I(s)= 
lq(s)-- IGq(S); e 6I(s) = Ia(s ) -  
Ioa(s ). The curves are normalized 

for I~o = 1 
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Table 4. The values in the table are calculated. For the Guinier region _+ 0,6~o 
deviations from the Gaussian curve were admitted. To have the correct coordinate 
the values on the table must be divided by lc in nm. The values in m (cm) are for 
the sample-detector distance a = 22 cm (see the note to Tables 2 and 3) 

/c'coordinate of /dlength of 
Guinier point Guinier region 
St3 x m a x  s m 
[nm- 1] [cm] Into- 1] [cm] 

On the 
intensity curve I(s) 0.0 0.0 
intensity curve of the 0.32 1.1 
cross-section Iq(S) = sl(s) 
intensity curve of the 0.58 1.7 
thickness l d(S) = sZ l(s) 

0.0-0.11 0-0.38 
0.21-0.38 0.7-1.3 

0.35-0.65 1.2 2,2 

Guinier  point,  which is very easy to observe  on the Guinier-plot .  Also the Guin ier  
region of  the cross-sect ion curve I~ ( s )=s I ( s )  is equal ly  good  to evaluate  for 
l~ ~< 10 nm (Fig. 4 b). 

To  find a relat ion be tween  R v and  lc, we develop  (2) and (6) in series and  we put  
I(s) = IG(s). We ob ta in  

Rv = (3/2)1/21~ = 1.225l~. 

The  same result is delivered by the well k n o w n  formula  es tabl ished with the help 
of  the m o m e n t s  of  the corre la t ion function. The m o m e n t s  are t abu la ted  in Table  1: 

R2v = M~4/2M~2 = (3/2)l~. 
In a similar way  as above  the apparen t  radius of  gyra t ion  related to the smeared  
scat ter ing intensity, /~,  is ob ta ined  f rom (3) and (6) 

/~ = (3/2x/2)/~ = 1.0607l~, 
therefore 

The evalua t ion  of  the radius of  the gyrat ions  of  Iq(s) and Id(s ) with a given lc shows 
that  

R q = l c / 2  and R d=Ic /5 .  (7) 

The  Volume V, the Cross-Sect ion Surface F, and the Thickness  D 

In the case of  the particle scattering, which we ob ta in  f rom a monod i spe r se  infinitely 
di luted system, the vo lume  V, the cross-sect ion surface F, and the thickness D have 
a concrete  geometr ical  meaning  concerning one well defined part icle with a given 
geometr ical  form in the system. O n  the o ther  hand,  the scat ter ing curve due  to an 
exponent ia l  corre la t ion funct ion will not  represent  a geometr ical  behav iou r  (shape 
and size) of  one  of  the inhomogenei t ies  (phase 1) in the matr ix  (phase 2) [5]. The 
system is a random scatterer [10]. 
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This scattering curve is determined only by two parameters: by the correlation 
length lc and by the zero intensity I o in absolute units. We have seen in (1) that l~ is 
a parameter of a statistical distribution the so-called zero-order Poisson distribution. 
Therefore, the length l~ and the corresponding spatial structure are difficult to 
visualize. 

Nevertheless, it is mathematically possible to de f ine -wi thou t  ambigu i ty -  
"volume", "cross-section", "thickness" and other parameters usual in the case of the 
particle scattering, for this system too: the volume 

V = (1 /4n) Io /M 2 (8a) 

will be, in our special case, with M 2 in s from the Table 2 

V = nl~. (8b) 

Similarly we have, from the modified intensity curves, the cross section surface F, 
from the s.c. cross-section intensity curve Iq(s) = sI(s), and from the intensity curve of 
the thickness Id(S ) = S2I(s) the thickness of the inhomogeneity D: 

and 
F = (1/2n)Iqo/M 2 = 2n(Iqo/Io)l  ~ (9) 

D = (1/2)Ido/M2 = 2n2(Iao/Io)l~ (10) 

with Iqo =sI(s )  at s = 0  and Idos2I~o at s = 0  obtained from a Guinier-type 
extrapolation of the intensity curves Iq(s) and Id(s ), respectively (see above). It is very 
easy to find that in this case the relative zero-intensities have simple relations at this 
intensity curve: 

Iqo/I  o =,~/4nl~ and Ido/I  0 = 1 / 2 ~ n 2 l  2, ( l la ,  b) 
therefore 

Iqo/Ido = enl~/2 with e = 2.718 . . . .  (12) 

From (9) with ( l la)  and from (10) with ( l lb)  we find the very simple relations for 
the cross-section surface and for thickness: 

F = ( x f e / 2 ) l  2 (13) 
and 

D = I c / x f e .  (14) 

Therefore ~ / D  = (x~e/2) 1/2",~ = 1.4969 and is independent from I0x and lc. 
The great importance of the relations (l la)  and (llb), and (13) and (14) is to 

obtain the zero-intensities Iox and the coherence length lc of the system from other 
parameters of the curve than those derived from the classical evaluation (plot I(s)-  1/, 
vs. s z) (also see below). It must be noted also that multiplication of the so defined 
F and D values does not give the volume V = nl2 of the inhomogeneity. We have 
from (13) and (14) FD = 1~/2 = V/2~ and F/D = eIS2. 

The  Porod Tail  and the Relative Inner Surfaces 0 s and S s in the Sys tem 

Porod [5a] enunciated the important  principle that the tail end of the scattering 
curve should conform to the asymptotic course of s-4: I ( s ) ~  Kps -4. Kp is the 
constant of Porod and is correlated with the relative inner surface of one 
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inhomogenei ty  (Os) and with the relative inner surface of the system (Ss): 

0 s = S J w l w  2 = 2rc2Kp/M2 . 

We find from Eq. (2) for s ~ ~ and with M2 from Table 2 that  

s4I(s) = K ,  = Io/b" = Io/(~Ic)', (15) 
therefore 

0~= 8/1~ and S~= 8wlwz/lc; (16) 

wl and w2 are the volume fractions of the phases (Wl + w2 = 1), which are to be 
determined from SAXS measurement  (9), or with other physical methods  (e.g. 
absorpt ion measurements).  

It should be remarked that  the slope t from Eq. (5a) and the Porod-cons tan t  Kp 
from (15) are connected in a simple way: 

t = b2/11/" and Kp = lo /b  4 give t = K~71/, (17a) 

with n = 2. Similarly to (17a) from the slope t of the smeared intensity curve we have 

Kp = "[o/b 3 and ~ ' = / ~  1/, (17b) 

with n = 3/2. Eq. (17a) (or (17b)) is an impor tan t  relation for the evaluation, because 
Kp is generally easier to determine than t. 

Molecular Weight 

The normalized scattered intensity at zero angle is correlated with the molecular  
weight M. The correlation depends only on the normalized zero intensity of the 
curve (M ~ Io/P,  P = normalizat ion factor), and not  on the form of the scattered 
intensity curve. Therefore, it is independent  of the distribution of the electron density 
and thus from the correlation length I c. For  a very general t reatment  of this problem 
the reader is referred to a basic paper by Kratky [-9]. 

Determination of  the Zero Intensity I o 

The zero angle intensity, rich in information (molecular weight, volume of the 
inhomogeneity,  correlation length) can never be measured directly in SAXS. To 
obtain it, we utilize in general an extrapolat ion of the innermost  part  of the scattering 
curve to the scattering angle zero. In the case of the classical (pure) particle scattering 
the Gaussian distribution (Guinier-plot) is unequivocally the theoretically correct 
extrapolat ion function. As we have seen, this remains valid in our distr ibution too. 
The application is, however, limited to lower Ic values and/or  very small entrance 
slits, because the Guinier-domain is too short and, therefore, difficult to measure. 
The plot of the Eq. (5) (I(s)- 1/2 vs. s 2 (or I(s)- 2/3 VS. S2)) is the usual and theoretically 
correct extrapolat ion to angle zero in this case. Nevertheless the determinat ion of 
the zero angle intensity with Eq. (5) will always remain a delicate problem because 
the diagram presents the root  of the reciprocal values of the intensities and the 
relative error of I o becomes great by reading I o 1/2 on the diagram. A least square 
approximat ion  of the straight line is very sensitive to the limits of the measured 
curve and to the method  of the elimination of the background.  
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Fig. 5. The intensity of the first measured point  l ( s l )  relative to the zero-intensity in the function of 
Ic (entrance slit 40#m, the first measuring point  was sl = 8.84 x 10 3 n m -  ') 

Therefore, for practical reasons it is necessary to note some other methods  to 
find out the zero angle intensity or the parameter  lc: 

(a) An approximated  value of I o is given by the tentative extrapolat ion of the 
plot  log I(s) vs. log s, since on this plot the slope in the region of the first measured 
points  is very small. 

Another  approximat ion  is to calculate the deviation of the intensity of the first 
measured point  s I relative to the zero intensity versus lc for a given entrance slit 
(Fig. 5). In both  cases the accuracy of the extrapolat ion depends on the coordinate  
of the first measured points ( - the width of the entrance slit) and on the est imation of 
the parameter  I c. A theoretically exact me thod  is given for the determinat ion of lc 
by the classical evaluation of the moment s  M1 and M z of the scattering curve (Table 
2). We have M 1 / M  2 = 2b/rc. The uncertainties due to the innermost  - not  measured,  
only extrapolated - part  of the experimental  curve, which can only be est imated by 
the evaluation, are minimized because s ~ 0, and the quot ient  of the moment s  is 
formed. 

(b) An exact, but  more  laborious me thod  is to evaluate the radius of gyration R~ 
from the Guinier-plot  of the "cross-section scattering curve" (Iq(s) = sl(s)) and/or  Rd 
from the "thickness scattering curve" (Id(S) = S2I(s)). The Eqs. (7) furnish Ic, and I o 
can be calculated e.g. from Eq. (5a). We can also utilize the ordinate-intercepts of 
the Guinier  plots and calculate Ic from (12) and I 0 from Eq. ( l la )  or (l lb).  

(c) Finally it is to remark that  often the Po rod  tail can be determined with great 
accuracy. We can utilize the first m o m e n t  M 1 and the Po rod  constant  Kp of the 
measured scattering curve (or M 1 and Kp from the smeared intensity curve) for the 
determinat ion of Io: the mult ipl icat ion of (17) with the evaluated M1 gives 

(1/2)I~/" = K[, 1 / " M  1 = t M  r 

For  n = 3/2 (smeared scattering curve) the factor 1/2 is cancelled. 
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