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The Exponential Distribution in Small Angle
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Summary. From all the theoretical small-angle X-ray scattering (SAXS) curves of compact (non-
particulate) systems elaborated systematically by Porod [2], we give a theoretical analysis of only one
scattering curve, the corresponding correlation function of which is an exponential distribution. To
obtain a correct as well as an easier determination of the zero-intensity I, and the correlation length
I, than with the procedure usual up to now (analysis of the plot I(s)~ 1/ vs. s? with n=2 or 3/2) the
classical SAXS-parameters of particle scattering will be involved in the evaluation. In this way the
results get also a more useful conception for a practical application.
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Die exponentielle Verteilung in der Rontgenkleinwinkelstreuung. Theorie und Praxis

Von den systematisch besprochenen Réntgenkleinwinkelstreukurven der dichtgepackten Systeme von
Porod [2] wird nur eine Streukurve, deren Korrelationsfunktion eine exponentielle Verteilung
aufweist, theoretisch analysiert und mit den klassischen Auswertungsmethoden der Partikelstreuung
in Verbindung gesetzt. Dadurch werden die die Streukurve bestimmenden Parameter /. (Kohérenzlidnge)
und die Nullintensitit I, besser erfaBt als mit der in der Literatur bisher verédffentlichten Methode
(Auftragung I(s)” /" gegen s%, mit n = 2 oder 3/2). Damit erhalten auBerdem die MeBergebnisse eine
anschaulichere Auslegung.

Introduction
Description of the Exponential Distribution

In the zero-order Poisson distribution the random variable r is said to have the
standard exponential distribution if its probability density function at r, in con-
ventionally abbreviated form, is

{0 forr<0
aexp(—ar) forr=0

in which a is an adjustable, positive and real number, called the parameter of the
distribution. This distribution is referred to either as the negative exponential or

* Dedicated to Prof. Dr. Dr. h.c. mult. Otto Kratky on the occasion of his 90th birthday
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simply as the exponential. In the following we use the second version. The
expectation value of the distribution is E(r) = 1/a and the variance V(r) = 1/a%

The exponential distribution is generally well-known to describe the radio-active
disintegration or among others the appearing of defects in matter. In his theoretical
publication [2] Porod systematically studies the small-angle X-ray scattering
(SAXS) curves of various compact (or non-particulate) systems, and shows that in
some cases the self-convolution of the electron density distribution in the system,
the so-called characteristic function or correlation function corresponds to an
exponential distribution as well, e.g. gel-structure with increasing concentration.
Earlier Debye and Bueche found the same by the light scattering study of Lucite
and two glass samples [1]. Utilizing the exponential distribution as a correlation
function in SAXS (or in small-angle scattering in general), the random variable r
signifies the distance, measured from an arbitrary point in the matter. The
parameter of the distribution, a, is now the reciprocal value of a mean distance. This
distance is defined [3] as the half of the integral breadth I, of the correlation
function (I,/2 = 1/a). I, is the so-called coherence- or correlation length defined by
Porod [4]. It is known that the reduced* chord length or intersection length I,
defined also by Porod [5], can be obtained by differentiating the correlation function
at r—0. In our case (normalized exponential function) the differentiation always
gives [3]

G@/y0) = (o) = —a= -1/,

Therefore, we obtain for the exponential distribution and only for this distribution,
an important relation between its correlation length I, and its reduced chord length
Ly

Fig. 1. I the correlation function with
exponential distribution y4(r) =
exp(2r/l.), 1. = 10 nm; 2 the correlation
function of a sphere, y,(r) =1 - 3x/2 +
x%/2, x =r/D, with the diameter D =
13.3 nm, corresponding to /.= 10nm,
and 3 Gaussian function with 2o =

0 1b r an] 2'0 l.=10nm

* The reduced chord length I, is closely related to the (average) lengths I, and I, of the chords crossing
phase 1 and phase 2, respectively in the arbitrarily chosen direction (I ' =17 + ;1) [5]
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and the distribution takes the simple form
Vo(r) = exp(—r/l,) = exp(— 2r/l). (1)

Figure 1 visualizes the exponential distribution, Eq. (1), with [, = 10nm (a= 1/I, =
2/l.=02nm™!) and compares it with the correlation function of a sphere
(7o(r) = 1-3x/2 + x*/2, x =r/D) with the diameter D = 13.3nm (corresponding to
I.=10nm; D =(4/3)l.) and with a normalized Gaussian probability distribution
having the same variance (y,(r) = exp(— a*r?/2)). Figure 2 shows the distance
distribution functions (p(r) =r?-7,(r)) of the same models (distance distribution
functions are frequently utilized in the SAXS analysis).

For practical reasons we note here the moments (the n'® moment of the
distribution f(x) is M, =[x"f(x)dx) and some other useful statements of this
distribution (Table 1).

The Fourier Transformation of the Exponential Distribution

The spherically symmetric Fourier transformation of the exponential distribution
y6(r) gives the distribution of scattered intensity (scattering curve) of the studied

Table 1. The moments and other parameters of the exponential function

Eq.(1)

Moments

M, =1/2=1, M., =lf/4= lf
M, = lc3/4 = 2lr3, M, = 312‘/8 = 61:‘

M, =31%/4 =240, M, = [rexp(—2r/l)dr=n!(l/2)""!

Deduced values

Center of gravity=1,/2 =1, integral width=1,/2 =1,
breadth at half maximum =1n21/2 = 0.3466[, = 0.69311,,
c=1/2=1, variance = /4 = 2,

M, /M, =12/2=2I%, M, /M =1=2]
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system. Using the coordinate x = s for the scattering curve, we have
I(s)=2s""[ryo(r)sin 2nrsdr
=25~ [rexp(—2r/l,)sin 2mrsdr = I, /(1 + (msl,)?)?, 2)

s=2sin6/4, A =wave length of the monochromatic X-ray. I(s) is the scattered
intensity at the coordinate s, without the influence of the collimating slit system
(pin-hole collimation or desmeared scattering curve), and the value of I(s) at s =0,
I,, is the so-called zero angle intensity. The Hankel transformation (of zero order)
of the exponential distribution delivers the scattered intensity I(s), which we obtain
with a slit system whose slit length is very large compared to the slit width

~

perpendicular to the slit length (I(s) is the s.c. “smeared” scattering curve of I(s)):
I(s)=2n [ rexp(—2r/l) Jomrs)dr = I, /(1 + (msl,)?)*2, 3)

J, is the Bessel function of zero order, I, the intensity at zero angle of the smeared
curve.

Tables 2 and 3 present the necessary parameters for the characterization of the
scattering curves (2) and (3).

The well known [6] general mathematical relations between the moments M,
and M, of the scattered and smeared intensities (I(s) and 1(s)) and between those
and the correlation function y,(r) can be confirmed in the case of the exponential
function also. Three important relations for the following practical considerations
should be kept in mind:

(a) I,=2M, therefore I,/I,=n/2b, (b) I,=2M,M_/n, (c) M,=2M,, (4)
where b is defined in the note to Tables 2 and 3.

Table 2. Parameters of the scattered intensity curve I(s) corresponding to the
exponential correlation function

Moments

M, = 1,m/4b, M, =1,/2b? M, =1,n/4b®
Deduced values

Center of gravity = 2/xnb, integral width = n/4b,

breadth at half maximum = (/2 — )%/b, o =./1—4/n%/b=0.7712/b,
variance = b~ (1 — 4/n?) = 0.5947/b2, M, /M, =1/b? M,/M,=2b/n

Table 3. Parameters of the smeared intensity curve I(a)

My=1I,b, M,=1I,/b%  integral width=1/b
Breadth at half maximum = ./2%3 — 1/b = 0.7664/b

Note to Tables 2 and 3: b=nl./Aa, or ==l or I /2 when the coordinate x is given
inm (= 2ab), orin s (= 2sin /1), or in h (= 4n sin §/2), respectively. 8 = Bragg angle,
a = distance from the sample to the plane of registration, / = wave length. I is the
scattered intensity at the angle =0, and I, likewise that of the smeared one
(so-called zero angle intensities)
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~

The Relation Between I(x) and I(x)

In the case of the exponential distribution of the correlation function, the pure
(not smeared) scattering curve with the coordinate x, I(x) and its smeared one, I(x)
(Fig. 3) are related in a simple way. We put Eq. (3) in Eq. (2) (using the general case
s = x) and we have the desmeared curve I(x) from the smeared one

1(x) = (Io/TgP) T(x)*",
and with (4a) and M, from Table 2
I(x) = (2b/m)I ; V13- T(x)*".
Or, in the same manner, we can obtain from the pure theoretical distribution the
smeared one:
I(x) = (T[,/13*) 1(x)** and  I(x)=(m/2b)I}* I(x)¥*,

As before (see note to Tables 2 and 3) b =n=l./A,, or nl,, or I.,/2 when the variable x
is given in m or in s or in A.

The Classical Evaluation of 1(0), I(0) and I,

The classical evaluation of the scattering curve I(x) (or 1(x), Egs. (2) or (3)) is the
plot I(x)~ /2 vs. x2 (or I(x)~*? vs. x?). The straight line with the slope  serves as
an extrapolating function to obtain the zero intensity I, (or I,,) at the angle zero.
From this zero intensity and from the slope the parameter /. can be calculated. We
have from (2) (or (3)) with n = 2 (for I(s)) or n = 3/2 or (for I(s))

1)~ =I5 4 151 b2x? (5)
which gives
I;at x=0,

0.0

-2.07

~4.0

log s [nm]

-6.0

-2.0 -1.0

Fig. 3. The scattering curve of a sample with an exponential distribution of its correlation function in
the plot log(I(s)) vs. log(s) obtained I with a pin-hole collimation system (unsmeared curve), 2 with a
Kratky-camera (smeared intensity curve)
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and with the slope
t=1;1"p* (5a)

we obtain

b1t /i

But this extrapolation to the zero angle intensity is sometimes a delicate problem.
We will discuss it in more detail at the end of this article.

Practical Evaluation of the Scattering Curve in the Case of the Exponential
Distribution of Its Correlation Function

The Guinier plots and the Guinier domains; the relation between the radius of gyration
R, and the length of coherence I..

The approximation of the innermost part of any SAXS curve I(s) with a Gaussian
distribution I, (s) was introduced by Guinier [7] originally for identical particles
for which all orientations are equally probable. The Gaussian approximation of
certain sections of any scattering curve in a modified form (I (s)=sI(s) or
1,(s) = s%I(s)) was elaborated by Porod [8]. In all three cases of the approximation
the parameter of the Gaussian functions is R,. These are the radius of the gyration
of the whole phase (R,), or of its cross section (R,), or of its thickness (R,),
respectively. The normalization factors I, are the intensity of the Gaussian curves
at s = 0 angle. They are proportional to the volume of the phase, in the case of I,
or to the cross section surface F, in the case of I, finally to the thickness D of the
phase in the case of I,, therefore, the general approximating function is:

I.(s)=1Io exp((—2ms)*-R?) (6)

with R2 = R2/3 for x = v and R} = R?/2 or R} = R} for x = g or d, respectively. R,
and I, are always to be determined from the corresponding intensity curve I,(s) in
the plot In(I.(s)) vs. s* (Guinier plot). The straight line in these plots designs the
domain of the validity of the Gaussian approximation (“Guinier domain”) in which
I.(s)=1I5.(s). To visualize this region, it is also instructive to draw a plot
0I(s) = I ,(s) — I.(s) vs. s (cf. Fig. 4).

The scattering curve corresponding to the exponential correlation function, Eq.
(2), possesses also well defined Guinier regions (Fig. 4). The coordinates of the
Guinier points depend on the value of [, (Table 4). By equality of the relations (2)
and (6), at the coordinate of the “Guinier point” s;,, we find that s;, = 1/zl, and
Sqa=S/enl,, e=2.718.... Table 4 gives also the practical limits of the Guinier
domains in s (nm ™ !) and in m (cm).

Table 4 and Fig. 4a show that (except in extreme cases such as very small
correlation length or very small entrance slit) the Guinier approximation can
practically never be applied on the simple intensity curve I(s). The Guinier region
for the evaluation of R, lies in the innermost part of the curve I(s) which is generally
not accessible for the measurement (e.g. for an entrance slit 60 myu and I, & 10 nm,
the first measured point on the curve is nearly the last one of the Guinier region
(Fig. 4a)). On the other hand, we find in Table 4 and Fig. 4c that the intensity
curve of the thickness I,(s) = s*I(s) possesses a wide Guinier region around the
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Fig. 4. The three Guinier do-
mains of the scattering curve
with an exponential distribution
of its correlation function pre-
sented as the difference o1.(s)
between the scattering curve
I.(s) and the approximating
Gaussian'curve I;,(s). [,=10nm.
a oI(s)=1I(s) — I(s); b 8I(s)=
I(s) —Ig,(s); ¢ SI(s)= I (s) —
I;4(s). The curves are normalized
for I =1
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Table 4. The values in the table are calculated. For the Guinier region + 0.6%
deviations from the Gaussian curve were admitted. To have the correct coordinate
the values on the table must be divided by I, in nm. The values in m (cm) are for
the sample-detector distance @ = 22 cm (see the note to Tables 2 and 3)

I.coordinate of I,-length of
Guinier point Guinier region
SGx Mex s m
[om™']  [em] [nm™'] [em]
On the
intensity curve I(s) 0.0 0.0 0.0-0.11 0-0.38
intensity curve of the 0.32 11 0.21-0.38 0.7-1.3
cross-section I, (s) = sI(s)
intensity curve of the 0.58 1.7 0.35-0.65 1.2-22

thickness I (s) = s2I(s)

Guinier point, which is very easy to observe on the Guinier-plot. Also the Guinier
region of the cross-section curve I (s)=sl(s) is equally good to evaluate for
I, <10nm (Fig. 4b).

To find a relation between R, and [, we develop (2) and (6) in series and we put
I(s) = 14(s). We obtain

R,=(3/2)%], = 1.2251..

The same result is delivered by the well known formula established with the help
of the moments of the correlation function. The moments are tabulated in Table 1:

R2=M,/2M,, = (3/2)I%.

In a similar way as above the apparent radius of gyration related to the smeared
scattering intensity, R, is obtained from (3) and (6)

R=(3/2/2)l, = 1.0607,,

R,=2R/./3.

The evaluation of the radius of the gyrations of I (s) and I,(s) with a given [, shows
that

therefore

R,=1/2 and R,=1/5. N

The Volume V, the Cross-Section Surface F, and the Thickness D

In the case of the particle scattering, which we obtain from a monodisperse infinitely
diluted system, the volume V, the cross-section surface F, and the thickness D have
a concrete geometrical meaning concerning one well defined particle with a given
geometrical form in the system. On the other hand, the scattering curve due to an
exponential correlation function will not represent a geometrical behaviour (shape
and size) of one of the inhomogeneities (phase 1) in the matrix (phase 2) [5]. The
system is a random scatterer [10].
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This scattering curve is determined only by two parameters: by the correlation
length I, and by the zero intensity I, in absolute units. We have seen in (1) that [, is
a parameter of a statistical distribution the so-called zero-order Poisson distribution.
Therefore, the length /. and the corresponding spatial structure are difficult to
visualize.

Nevertheless, it is mathematically possible to define — without ambiguity -

“yolume”, “cross-section”, “thickness” and other parameters usual in the case of the
particle scattering, for this system too: the volume

V=(1/4n)l,/M, (8a)
will be, in our special case, with M, in s from the Table 2
V=nl (8b)

Similarly we have, from the modified intensity curves, the cross section surface F,
from the s.c. cross-section intensity curve I (s) = sI(s), and from the intensity curve of
the thickness 1,(s) = s*I(s) the thickness of the inhomogeneity D:

F=(1/2m)],0/M; =2n(I,0/1o)L3 ©)
and

D =(1/2)140/M, =21(140/1,)1} (10)
with I, =sl(s) at s=0 and I,,5°I,, at s=0 obtained from a Guinier-type
extrapolation of the intensity curves I (s) and I,(s), respectively (see above). It is very
easy to find that in this case the relative zero-intensities have simple relations at this
intensity curve:

Lo/lo=1/e/dnl, and I,o/I,=1/2/en*, (11a,b)

Io/lio=enl.2 withe=2718.... (12)

From (9) with (11a) and from (10) with (11b) we find the very simple relations for
the cross-section surface and for thickness:

therefore

F=(/e/L (13)
and
D=1//e (14)

Therefore \/17 /D = (\/2/2)1/ 2-\/2 = 1.4969 and is independent from I, and /..

The great importance of the relations (11a) and (11b), and (13) and (14) is to
obtain the zero-intensities I, and the coherence length [, of the system from other
parameters of the curve than those derived from the classical evaluation (plot I(s) '/
vs. 5°) (also see below). It must be noted also that multiplication of the so defined
F and D values does not give the volume V = zl? of the inhomogeneity. We have
from (13) and (14) FD =1?/2 = V/2rn and F/D = el /2.

The Porod Tail and the Relative Inner Surfaces O, and S, in the System

Porod [5a] enunciated the important principle that the tail end of the scattering
curve should conform to the asymptotic course of s“*:[(s)zKps““. K, is the
constant of Porod and is correlated with the relative inner surface of one
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inhomogeneity (O,) and with the relative inner surface of the system (S,):
Os = SS/W1W2 = 27I2KP/M2.
We find from Eq. (2) for s > o0 and with M, from Table 2 that

s*1(s) = Kp = 1,/b* = I/(nl )*, (15)
therefore
0,=8/l. and S,=8w w,/L; (16)

w, and w, are the volume fractions of the phases (w, + w, = 1), which are to be
determined from SAXS measurement (9), or with other physical methods (e.g.
absorption measurements). '

It should be remarked that the slope ¢ from Eq. (5a) and the Porod-constant K,
from (15) are connected in a simple way:

t=b*/I)" and Kp=1I,/b*givet=K,'" (17a)
with n = 2. Similarly to (17a) from the slope t of the smeared intensity curve we have
Kp=TIo/b® and f=K,'n (17b)

with n = 3/2. Eq. (17a) (or (17b)) is an important relation for the evaluation, because
K, is generally easier to determine than_ L.

Molecular Weight

The normalized scattered intensity at zero angle is correlated with the molecular
weight M. The correlation depends only on the normalized zero intensity of the
curve (M ~ 1,/P, P = normalization factor), and not on the form of the scattered
intensity curve. Therefore, it is independent of the distribution of the electron density
and thus from the correlation length /.. For a very general treatment of this problem
the reader is referred to a basic paper by Kratky [9].

Determination of the Zero Intensity I,

The zero angle intensity, rich in information (molecular weight, volume of the
inhomogeneity, correlation length) can never be measured directly in SAXS. To
obtain it, we utilize in general an extrapolation of the innermost part of the scattering
curve to the scattering angle zero. In the case of the classical (pure) particle scattering
the Gaussian distribution (Guinier-plot) is unequivocally the theoretically correct
extrapolation function. As we have seen, this remains valid in our distribution too.
The application is, however, limited to lower [, values and/or very small entrance
slits, because the Guinier-domain is too short and, therefore, difficult to measure.
The plot of the Eq. (5) (I(s) ™ /2 vs. s? (or I(s) " 2/3 vs. 5?)) is the usual and theoretically
correct extrapolation to angle zero in this case. Nevertheless the determination of
the zero angle intensity with Eq. (5) will always remain a delicate problem because
the diagram presents the root of the reciprocal values of the intensities and the
relative error of I, becomes great by reading I, !/* on the diagram. A least square
approximation of the straight line is very sensitive to the limits of the measured
curve and to the method of the elimination of the background.
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Fig. 5. The intensity of the first measured point I(s,) relative to the zero-intensity in the function of
I (entrance slit 40 um, the first measuring point was s, = 8.84 x 10 >nm™!)

Therefore, for practical reasons it is necessary to note some other methods to
find out the zero angle intensity or the parameter /,:

(a) An approximated value of I, is given by the tentative extrapolation of the
plot log I(s) vs. log s, since on this plot the slope in the region of the first measured
points is very small.

Another approximation is to calculate the deviation of the intensity of the first
measured point s, relative to the zero intensity versus [, for a given entrance slit
(Fig. 5). In both cases the accuracy of the extrapolation depends on the coordinate
of the first measured points (~ the width of the entrance slit) and on the estimation of
the parameter /.. A theoretically exact method is given for the determination of [,
by the classical evaluation of the moments M, and M, of the scattering curve (Table
2). We have M, /M, = 2b/rn. The uncertainties due to the innermost — not measured,
only extrapolated — part of the experimental curve, which can only be estimated by
the evaluation, are minimized because s— 0, and the quotient of the moments is
formed.

(b) An exact, but more laborious method is to evaluate the radius of gyration R,
from the Guinier-plot of the “cross-section scattering curve” (I (s) = sI(s)) and/or R,
from the “thickness scattering curve” (I,(s) = s?I(s)). The Egs. (7) furnish [, and I,
can be calculated e.g. from Eq. (5a). We can also utilize the ordinate-intercepts of
the Guinier plots and calculate /. from (12) and I,, from Eq. (11a) or (11b).

(c) Finally itis to remark that often the Porod tail can be determined with great
accuracy. We can utilize the first moment M, and the Porod constant K, of the
measured scattering curve (or M,; and K, from the smeared intensity curve) for the
determination of I,: the multiplication of (17) with the evaluated M, gives

(/DI = K 1M, = tM,.

For n=3/2 (smeared scattering curve) the factor 1/2 is cancelled.
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